 infrared rays (heat vision). This suxth SENSE allows them to locate prey during the night.

This royal python (Python regius) sees a thermal image in its brain that allows it to track prey quickly and efficiently.

Royal python

40 This system is so precise that pit vipers can notice

The FIVE senses

HEARING

Snakes do not have external ears. Their hearing is poor so they rely on vibrations from the ground that pass through skull bones on their lower jaws to their ears. This puff adder (Bitis arietans) is sticking close to the ground to sense any vibrations.

SIGHT

Snakes generally don't have great vision, although they are adept at detecting movement. The vine snake (Ahaetulla nasuta) is unusual in that it has forward-facing eyes that give it binocular vision and a good sense of distance.

TASTE

The Jacobson's organ enables snakes to taste and smell. The organ consists of two sensitive cavities in the roof of the snake's mouth. Their tongue gathers particles that the organ analyzes. Snakes that live in water, such as the green anaconda (Eunectes murinus) are able to use their tongue to gather particles underwater

SMELL

Snakes use their sense of smell to help them locate prey. The common boa constrictor (Boa constrictor) detects its prey through scent and taste. Using its Jacobson's organ it is able to work out if prey is nearby. Boas wrap their coils around their victims and squeeze hard to kill them.

TOUCH

From the beginning of a snake's life, it relies on touch for guidance. It uses its tongue and pressure receptors in its skin to touch objects, move, and orientate itself. The Indian python (Python molurus) is using its tongue to explore its surroundings.

The newt that

This captive-bred axolotl looks like an albino-with no pigment in its skin-but since it has pigment in its eyes it's called "leucistic," which means reduced pigment.
"Wild-type" axolotls are usually dark.

Wild axolotls are only found
in the canal systems of Mexico's Lake Xochimilco. Located close to Mexico City, these canals are threatened by pollution and increased development.

The axolotl is the Peter Pan of the animal world. It doesn't undergo metamorphosis like many other amphibians. Instead, it spends its entire life in a juvenile form, keeping it gills and fins, and living in water. The axolotl grows steadily bigger until it is old enough to reproduce.

Though their numbers are falling in the wild,
 many axolotls are kept in captivity. Axolotls are popular pets, but they are also studied by scientists because of their interesting life cycles and their powers of regeneration-axolotls can regrow entire limbs. In captivity it is sometimes possible to make the axolotls metamorphose by injecting them with special hormones that trigger growth and development. In their adult form, they look very like their near-relatives, the tiger salamanders.

the ancient language of the Aztecs.

What's for dinner?

Lizards for starters

Most lizards are insect-eaters (insectivores), but some have special diets. Some big lizards are carnivores and eat animals such as birds, rodents, or other lizards. A few lizards are plant-eaters (herbivores).

The binge-eater

The Gila monster (Heloderma suspectum) only eats between 5-10 times a year, but when it does, this lizard can consume the equivalent of over half of its body weight. It mainly eats the eggs of birds or other reptiles.

The insectivore

The Sinai agama (Pseudotrapelus sinaitus) is a slender lizard. It has long, thin limbs, which make it good at running over the hot sand when it hunts in the heat of the day. It feeds on ants and other insects, but it also eats sand!

The vegetarian

One plant-eating lizard is the green iguana (Iguana iguana), which survives on a complex diet of leaves, shoots, flowers, and fruit. It can't digest animal protein well, although it may sometimes accidentally eat small insects and other invertebrates that are attached to vegetation.

Frog food that moves

Most frogs are carnivorous. Nearly all of them eat insects and other invertebrates like worms, spiders, and centipedes, but some of the bigger frogs take on larger prey, such as mice, birds, or other frogs.

The Gila monster stores fat in its thick, stumpy tail. It is this energy store that allows it to survive for months without food.

The jelly-eater

Leatherback turtles (Dermochelys coriacea) are the biggest turtles in the world. They live on a diet of jellyfish and comb jellies, both of which are made up mostly of water. To get enough energy and nutrients to grow so big, leatherbacks eat huge quantities of food--they sometimes eat

Sea turtles

The diet of sea turtles varies between species. Some eat a wide range of foods, both plant and animal, but others have special diets, with adaptations that make it easier to eat particular things.

The cruncher

Loggerhead turtles (Caretta caretta) mainly eat hard-shelled creatures such as crabs, conchs, and clams. Their big heads and strong jaws help them to crush the shells and they can hold their breath for up to 20 minutes on their dives down to the sea floor.

LIVING FOSSILS

The giant salamanders of China and Japan are the world's largest amphibians. While most salamanders would fit in the palm of your hand, giant salamanders grow bigger than your arm-and some longer than the length of your entire body. NO ONE KNOWS how long giant salamanders live in the wild, but the oldest captive salamander lived for 52 years.

GIANT salamanders have changed very little in the last 30 million

The Chinese giant salamander (Andrias davidianus) is the world's largest amphibian, growing up to $6 \mathrm{ft}(1.8 \mathrm{~m})$ in length in captivity. It is heavily built, with a flat head and a wide mouth. Like its Japanese cousin, it lives a completely aquatic existence and its short legs cannot support its body weight when it is out of the water.

Chinese giant salamander

years, which is why they are described as "living fossils."

The Japanese
giant salamander (Andrias japonicus) is the second-largest amphibian, growing up to $5 \mathrm{ft}(1.5 \mathrm{~m})$ in length. The Japanese and Chinese salamanders breathe through their skin. Their skin has folds and wrinkles that increase the surface area, allowing more oxygen in. They like to live in clean, fast-flowing streams but numbers of both species have dropped owing to pollution and dam building.

Japanese giant salamander

Are you feeling LUCKY? Challenge a friend to a game of snakes and ladders and see who gets to the top first. BE CAREFUL not to step on a snake-the ones in this game all have deadly bites!

You will need:

* One or more friends to play with
* A small object to use as a counter for each person * A die

How to play:

To decide who starts, everyone rolls the die and the person with the highest number goes first. When it's your turn, roll the die and move your counter along by the number. If you land on the bottom of a ladder, climb to the top of the ladder. If you land on the top of a snake, slither down to the square at its bottom. If you roll a six, take another turn. The first person to pass 100 wins.

Good luck!

98	Hog nose 97	96	95	94	93		91
83	84		86	87	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Death } \\ \text { adder } \\ \text { ader } \\ \hline \end{array} \\ \hline \end{array}$	89	90
78	77		75	74	73		71
63	64	65	66	67	68	69	70
58	57	56	145	$\begin{aligned} & \begin{array}{l} \text { Bealed sea } \\ \text { sane } \end{array} \\ & \hline \end{aligned}$	53	52	51
	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Deadr } \\ \text { adier } \\ \hline \end{array} \\ \hline \end{array}$	45		47	48	人 49	
	37	36	$\begin{aligned} & F \\ & 35 \end{aligned}$	34			31
23		25			28	$\underbrace{\substack{\text { lanand } \\ \text { taipan }}} 29$	
18		16	15	14	13		11
3	4	5		7	8	9	10

Horned lizard

Built like miniature armored tanks, horned lizards move ponderously along the baking ground of their dry desert habitats; stopping to sunbathe, dig burrows, and snack on ants. They have evolved a range of adaptations to help them survive.

$51 / 2$ in $(14 \mathrm{~cm})$

Found in northern Mexico and southwestern US

Bloody DEFENSE

Horned lizards use the spines on their backs in self-defense. In addition, they also exhibit a startling form of defense. A network of weakened blood vessels allow them to spray a stream of blood out from their eyes toward attackers. This blood tastes horrible to potential predators.

Dew DRINK

Living in dry, desert conditions,

horned lizards have evolved to get as much water from their environment as possible. The tiny grooves between the lizard's scales channel moisture from dew that has gathered on its body toward the lizard's mouth, providing a refreshing morning drink.

Body BEAUTIFUL

Another adaptation to its desert environment, is the horned lizard's wide, flat body. This allows it to catch rainwater during infrequent desert showers. The lizard raises its tail and channels droplets down to its mouth. Its bumpy, mottled appearance helps it blend into its surroundings and avoid detection by predators flying above.

Sticky TONGUES

This ant contain lots of chitin, which is indigestible to a horned lizard. That means the lizard must eat an awful lot of ants to get enough nutrients to survive. Thankfully, the lizard has a secret weapon-a long sticky tongue, which it flicks out like a whip to gather
 lots of ants.

Horny HEADS

The lizards are named for their distinctive horns. These shapes break up the outline of the lizards' heads-making them harder to spot in among the rocks and stones of the desert. Their raised brow bumps help to shield their eyes from the strong desert sun, while thick eyelids protect their eyes from stings of their ant prey.

Why did this woman turn people INTO STONE

In Greek mythology, Medusa was a fearsome, snake-headed monster. Once a beautiful woman, she was transformed by the goddess Athena as punishment for meeting the sea god Poseidon in Athena's temple. In some tales, not only was her hair turned into a twisting mass of hissing snakes, but her teeth also became tusks and her skin was made green and scaly. Anyone who looked at her hideous form turned to stone. Medusa was eventually slain by Perseus, the mortal son of Zeus, king of the gods. He did not look at Medusa directly, but watched her reflection in his metal shield before beheading her.

[^0]

In search of the flapping

The LAKE TITICACA FROG is the largest aquatic frog

 in the world. The lake it lives in is 12,500 feet $(3,800 \mathrm{~m})$ above sea level, making it a very $C O L D$ environment to reside in.The frog doesn't usually need to surface for air, since it absorbs oxygen through its skin. It has a lot of skin with plenty of flaps and a big surface area, enabling it to breathe underwater.

It does push-ups in order to circulate the water surrounding its body. This keeps its skin folds in contact with oxygenated water.

Brrr, it's chilly! The air is thin and freezing cold so the Lake Titicaca frog survives by living permanently at the lake's bottom. The water here never rises above $50^{\circ} \mathrm{F}\left(10^{\circ} \mathrm{C}\right)$.

.

Lake Titicaca is located on the border of Bolivia and Peru.

waters, where it lays about 500 eggs.

Clever DISGUISE

6
2
[1]
\square
E

The best way to keep from being eaten is not to be noticed. The pygmy leaf-dropping frog (Afrixalus pygmaeus) has a very unglamorous way to merge in with its surroundings-by looking like

Fearsome FRILLS

The frilled lizard (Chlamydosaurus kingii) has a loose ruff of skin around its neck. Most of the time it sits flat, like a cape around the lizard's shoulders, but when the lizard is threatened, the ruff expands and the lizard lunges forward, attempting to startle its attacker for just long enough to make its escape. a bird dropping. It sits on leaves in full view and tries to escape attention by sitting very still.

Tail TRICKERY

Some lizards have developed a startling form of defense, dropping their tails and leaving them wriggling on the ground to distract predators. Skinks, geckos, and slow worms can all detach their tails. Some can grow new tails, but these are never as long as the original.

Playing DEAD

Many predators do not eat animals that are already dead, so pretending to be dead can be an excellent way to stay alive. Some snakes have very dramatic mock deaths where they writhe erratically, bite themselves, and fall back to lie still. Sometimes blood trickles from their open mouths.

Toxic to the TOUCH

Some frogs protect themselves by making themselves poisonous to the touch. When this marbled milk frog (Trachycephalus venulosus) feels threatened, the poison glands that line its back and neck start to release a toxic milky secretion.

Spitting VENOM

Some cobras spray or spit venom at a threat. The Mozambique spitting cobra (Naja mossambica) can target its venom with pinpoint accuracy. This spitting behavior is so instinctive that young snakes will spit even as they are hatching from their eggs.

Warning RATTLE

The rattlesnake warns off predators by making an intimidating rattling sound with its tail. Its rattle is made of hollow sections that clash against each other when the snake shakes its tail.

Big and SCARY

To convince a predator that it is too big to handle, the black rain frog (Breviceps fuscus) puffs itself up to twice its original size. This sudden growth spurt also makes it harder to dig the frog out from its tunnel.

REPTILES and AMPHIBIANS use a variety of ways to defend themselves against
their enemies. They Spit, rattle, trick, and Scare their way to safety. $\hat{3}$

travel blog

 The LEATHERBACK sea turtle loves

 The LEATHERBACK sea turtle loves}
Travel FACTS

Leatherback sea turtles are big travelers. One leatherback was tracked over an epic voyage of more than 12,500 miles (20,000 km). Leatherbacks travel these long distances to feed their appetite for jellyfish.

User PROFILE

Leatherback sea turtle

 (Dermochelys coriacea) Leatherbacks are the largest species of sea turtle, and one of the largest reptiles on Earth. An adult leatherback can weigh more than $1,000 \mathrm{lb}$ (450 kg).

Size: 4-8 ft (1.2-2.4 m)

Departure time

Adult sea turtles spend their lives in the world's oceans. They roam large distances in search of food and mates. Adult females also make long excursions to breeding beaches, usually where they were born, to lay their eggs. Experts are still researching how sea turtles find their way back, but they believe sea turtles use Earth's magnetic field, the sea's chemistry, and their memories.

A built-in swimsuit

The leatherback's shell (known as a carapace) is made of a tough, leathery, cartilage material, which gives the sea turtle its Latin name.

Life's a beach

Once the female leatherback has found a beach, she digs a small hole in the sand using her back flippers. She then lays about 100 eggs and covers them with sand. Sea turtles usually nest at night when it is safer.
to travel and swims from warm tropical seas to cold, temperate waters.

A new journey
The eggs take about two months to incubate in the sand. The baby sea turtles, known as hatchlings, can take days to dig their way out. Hatchlings normally emerge at night and make the long journey across the beach to the lapping waves. This is a dangerous time for a hatchling, because they are vulnerable to predators such as birds and crabs. About 90 percent of hatchlings never make it to adulthood.

Sea turtle SPECIES

- Hawksbill

- Loggerhead

- Green

- Olive Ridley

- Kemp's Ridley • Flatback ©

ocean, it sets out on a swimming frenzy. It will keep paddling for up to 48 hours.

LOST

WANTED

The Southern gastric-brooding frog (Rheobatrachus silus) has not been seen in the wild since 1981. After mating, the female swallowed her eggs, switching off her digestive system to allow the larvae to develop. After 6-7 weeks, the female regurgitated her young

WANTED

The Darwin's frog (Rhinoderma darwinii) has an unusual snout. The male uses his vocal sac to hold the tadpoles until they turn into young frogs. Numbers are declining because the frog's habitat is being destroyed through drought and deforestation.

WANTED

The golden toad (Incilius periglenes) fell prey to climate change, with rising temperatures and erratic rainfall. Fewer breeding pools meant that frogs gathered in greater numbers and this allowed disease to pass quickly through the population.

WANTED

Last seen in 1955, the Hula painted frog (Discoglossus nigriventer) was once found along the eastern shore of Israel's Lake Hula. When the Hula marshes were drained in an attempt to reduce the incidence of malaria and make way for agricultural land, it also wiped out the species.

Certain AMPHIBIANS and REPTILES are declining in numbers or

 being lost altogether. However, lots of new species are being found every year. Although they can't replace the lost animals that become extinct, they can give scientists hope for the future.
FOUND

In 2009, a survey found that 200 possible new species of frog were living on the island of Madagascar. Statistics like these are exciting, since they give scientists promise of finding new populations of other animals. Earth contains so many surprises-scientists have to be willing to explore remote places to find and identify new species, although every now and then they'll find them in places that have already been explored.

Occasionally, species new to scientists have been known to locals for years. The bitatawa monitor lizard (Varanus bitatawa) was found by scientists who were walking across a field in the Philippines in 2010. However, the locals had been hunting it for a long time. Scientists missed it because it doesn't come down from the trees very often.

Discovered in Indonesia's Foja Mountains during an expedition in 2008, this little frog has a long,
Pinocchio-like inflatable nose that expands when the male is calling out. He was seen sitting on a bag of rice in the scientist's campsite and is thought to be one of about 150 species of Australasian tree frogs.

Is it a bird Is it a plane?

The Wallace's flying frog (Rhacophorus nigropalmatus) is also known as the "parachute frog" and is one of the few aerial amphibians. The membranes between its toes and the loose skin on its sides help it to glide through the air, although it doesn't actually fly.

Found in Malaysia and Borneo

Don't 4 LOOK UP

The paradise tree snake is capable of gliding among bigh trees in tropical forests. It dangles from the end of a branch and decides on its direction of travel. It then pushes its body away from the tree, pulls in its stomach, and flares out its ribs so that it is twice as flat as normal. It glides through the air in a motion of lateral undulation (wavelike movements that propel it forward) in line with the ground so that it can land safely. It can glide distances of up to $330 \mathrm{ft}(100 \mathrm{~m})$.

It's considered to be the most adept of the flying snakes.

The PARADISE TREE SNAKE has a slender body and a long tail. It can MEASURE up to $3 \mathrm{ft}(0.9 \mathrm{~m})$.

It's a daytime hunter and lives on a diet of lizards, frogs,
bats, and birds. Its TOXICITY is not dangerous to humans.

How did frogs' legs shock SCIENCE?

In 1771, a chance discovery on professor Luigi Galvani's experiment table led, eventually, to the invention of the first battery-without which our lives today would be very different. So how did one small hop for an amphibian become a giant leap for science?

Luigi Galvani was a
biologist at the University of Bologna, Italy. He was experimenting with frogs' legs and static electricity when his metal scalpel touched the brass hook that held the legs. Suddenly, the legs twitched!

Luigi Galvani

A shocking discovery

Just after Galvani's accidental discovery, it happened again. In a separate experiment, Galvani's assistant touched the frog's sciatic (spinal cord) nerve with his scalpel while he was taking a spark of static electricity from a storage jar. Galvani wrote, "Suddenly all the muscles of its limbs were seen to be so contracted that they seemed to have fallen into tonic convulsions."

Jumping to conclusions

Galvani realized that electricity had made the legs twitch, but where did it come from? He mistakenly concluded that the frog's bodily fluids must have been a source of electricity, which he called "animal electricity."

Science owes a lot to Galvani, including the study of bioelectricity (electricity in a body's nervous system) and the process of "galvanizing" (or coating) metal to protect it.

One thing leads to another

Galvani published his ideas in 1791, when scientist Count Alessandro Volta read them. Convinced that Galvani was wrong, Volta repeated the experiments and found that electricity did not come from the frog-but that wet tissue in the legs allowed electricity to flow between the metal instruments holding the legs. This gave Volta an idea: a pile of copper and zinc disks with layers of wet cardboard between them would not only conduct electricity, but could also store it. This "Voltaic pile" was the first battery.

How to survive an

 encounter with a crocodile or an alligator
1. Do your research and keep an eye out!

Swim in designated areas only. Alligators and crocodiles tend to hunt at dusk or at night so don't go swimming at those times. Crocodilians often only show their eyes and nostrils above the water, so you probably won't spot them easily.

2. Give them space!

You should not get too close to crocodiles and alligators-15 ft (4.5 m) is usually enough room to keep between you and them.

3. Catch me if you can!

The average adult can outrun a crocodile or alligator on land. The fastest land speed for a crocodilian is only $10 \mathrm{mph}(17 \mathrm{kph})$.

4. Don't scare them!

Steer clear of the riverbank if you're on a boat coming around a bend. Crocodilians like to bask on the banks and will react in self-defense if you scare them. If you spot a crocodile or alligator, try to let them know you're there by slapping the water with your oars or by blowing a whistle.

5. Get help as soon as you can

If a crocodilian is defending its young or its territory it might bite its opponent quickly and then let go. However, it is more likely to bite its prey and not release it. If you manage to get away from its grip then you should seek medical help immediately.

they can CRUSH bones when they close!
 \title{
WORKING WITH
 \title{
WORKING WITH amphibians and reptiles
}

You want to be what?

A HERPETOLOGIST

Zoology is the name given to the study of animals. Herpetology is a branch of zoology and is the study of reptiles and amphibians. A herpetologist is an expert on these animals.

SURGEON

Veterinary SUR deal with animals some vets are specially trained. They know lots about such as reptiles and amphibians. Treatures and how to the health and lifestyles of these captivity. Working with care for them in the wild or in captivefession, since a bite large reptiles can be a hazardous serious than one from a dog. from an alligator is more seri

Snake HANDLER
 \section*{If you've gota}

Professional or volu no woing to call? to remove sna feer snake handlers can be called in they can come introm houses and other places where escaped pets or wild santact with people. These may be be-looking for shade in the summer months.

Biomedical RESEARCHER
some species of amphibian and reptile produce toxins and poisons. Biomedical researchers study these chemicals and look at ways in which they can be of use to humans. More than 200 chemicals produced by amphibians and reptiles have been found to be of use in human medicines.

How does this lizard walk $?$ on water

 The green basilisk lizard is often referred to as the "Jesus Christ lizard" because it appears to walk on water. How it actually manages this "miracle" is by running short distances using its hindlegs. Its toes have fringes of skin that open out to create more surface area.These Curious and strange-looking lizards gain their name from Greek mythology. Made up of parts of a snake, rooster, and lion, the basilisk was able to kill a man just from one look. The name basilisk means "little king" in Greek, which seems appropriate considering the crests on its head, back, and tail.

RECORD BREAKERS

Most POISONOUS
The Colombian golden poison frog (Phyllobates terribilis) is the most poisonous frog, and the most poisonous vertebrate, in the world. It holds enough poison to kill 20 humans or 20,000 mice.

LONGEST FANGS

The Gaboon viper (Bitis gabonica) is a venomous snake found in sub-Saharan Africa. The largest of the vipers, it can reach over $7 \mathrm{ft}(2 \mathrm{~m})$ in length and has huge fangs, measuring up to 2 in $(5 \mathrm{~cm})$ long.

RECORD SPIT

Spitting cobras have a special type of fang with a small hole through which the venom is injected at high pressure. The Mozambique cobra can spray its venom over distances of $51 / 2-81 / 4 \mathrm{ft}(2-3 \mathrm{~m})$.

BIGGEST Snake
The Asian reticulated python (Python reticulatus), which can grow to $311 / 2 \mathrm{ft}(9.6 \mathrm{~m}$), is the longest. The heaviest snake is the green anaconda, weighing up to $550 \mathrm{lb}(227 \mathrm{~kg})$.

FASTEST

The black spiny-tailed iguana (Ctenosaura similis) can run at a top speed of 22 mph (35 kph) —making it the world's fastest reptile. The fastest snake, the black mamba, can move at 12 mph (19 kph).

BIGGEST clutch of eggs Hawksbill turtles (Eretmochelys imbricata) can lay over 200 eggs in a single clutch. During the turtles' breeding season, which runs from July to October, female turtles may create 3-5 nests, each with a separate clutch of eggs.

SMALLEST Reptile
This title is shared by two geckos, both measuring just over $1 / 2$ in $(1.6 \mathrm{~cm})$ as full-grown adults: the Virgin Gorda least gecko (Sphaerodactylus parthenopion) and the dwarf gecko (Sphaerodactylus ariasae).

MOST EYES

Tuataras and many of the lizards have three eyes. The third eye is made up of light sensitive cells just under the skin on the top of the head. This "eye" can detect light and dark but can't make out shapes.

STRANGEST life cycle
One contender for this title has to be Labord's chameleon (Furcifer labordi). This reptile spends most of its life (up to 7 months) as an egg, weathering the desert droughts. It lives for only a few months after hatching.

The LOUDEST

The couqui frog (Eletherodactlus) is a small Puerto Rican tree frog, measuring just $11 / 2$ in $(4 \mathrm{~cm})$ in length. For something so small, it is incredibly loud, and its distinctive "co-kee" call has been measured at over 100 decibels.

Best SENSE OF SMELL

Komodo dragons (Varanus komodoensis) will readily feed on rotting meat. They smell with chemical detectors on their tongues and can sense dead animals up to 6 miles (10 km) away. Komodo dragons are the world's largest lizard.

MOST DIFFICULT to eat

One contender for this title must be the armadillo girdled lizard (Cordylus cataphractus). This lizard is covered in thick and spiked, armorlike scales. It can roll up into a ball, making itself even more unappealing to potential predators.

The MOST TEETH

American alligators have between 70 and 80 teeth. The teeth are long and pointed but gradually wear down, to be replaced by new teeth. An alligator can go through 2,000 to 3,000 teeth during its lifetime.

Biggest LEAPS

Most frogs can leap over distances of 10 times their own body length and some species can jump up to 50 times their body length. The largest frog in the world, the Goliath frog (Conraua goliath), can jump almost $10 \mathrm{ft}(3 \mathrm{~m})$.

LARGEST REPTILE

The saltwater crocodile (Crocodylus porosus) is the world's largest reptile, growing to more than $23 \mathrm{ft}(7 \mathrm{~m})$ in length. Not only the largest, but also the heaviest, saltwater crocodiles can weigh over a ton.

The OLDEST

The oldest vertebrate (animal with a backbone) is thought to be a Seychelles giant tortoise nicknamed Jonathan. Historians believe that he is now at least 178 years old.

LONGEST TONGUE

Chameleons can have tongues that are as long, or even longer, than their bodies. It takes them less than a second to shoot their tongues out, and the sticky saliva on the tongue's clublike tip traps its insect prey.

most POISONOUS Snake Sea snakes are the most poisonous snakes in the world. The beaked sea snake (Enhydrina schistosa) can produce enough venom in a single bite to kill 50 people.
adapt to change，becoming suited to a new place or a new use．
amphisbaenian wormlike，legless reptile found in tropical climates．
animal breeder someone who organizes the birth of baby animals in captivity and looks after them until they find a new home．
animal keeper someone who looks after animals in a zoo or wildlife park．
antidote a remedy that counteracts the effects of a poison．
antivenom a medicine that treats poisoning from a snake，spider， or insect．
aquatic describes anything growing or living in water．
bask to lie resting in the sunshine．
biomimetics science that copies nature．
captivity when animals are kept confined and looked after by people．
carnivore an animal that eats meat．
cold－blooded describes animals whose body temperature is controlled by the temperature around them．
coma a state of deep unconsciousness．
crocodilian one of the order of reptiles that includes crocodiles，alligators， caimans，etc．
ते
तो
endangered species animals that are êt risk of extinction（no longer existing ©n Earth）．

镸ectrophysiology the study of the ectrical properties of living tissues解n cells．
会
éstivation a kind of deep sleep that animals fall into，sometimes called ＂summer sleep．＂
evolve to change gradually．
extinct a species that has declined and disappeared entirely from the planet．
eyespot skin marking that looks like the eye of another animal．Eyespots are there to fool predators or prey．
fertilize when male and female cells join together to produce a new life．
fins flat projections on fish or mammals that help them propel or guide their bodies through water．
gills organs used to breathe underwater．
hatch when a new animal breaks out of an egg or pupa．
herbivore an animal that eats plants．

hibernate to go into a deep sleep for long periods．
incubation to keep eggs warm so they develop properly．
insectivore an animal that eats insects．
invertebrate an animal without a backbone．
lateral undulation wavelike body movements that move an animal（such as a snake）along．
life cycle the pattern of changes that occur in each generation of a species．
markings areas of color on an animal＇s skin or fur．
mate when male and female animals come together during reproduction．
membrane thin，flexible sheet or layer that covers，lines，or connects animal organs or cells．
metamorphosis major change in an animal＇s body during its life cycle，as when a tadpole changes into a frog．
nervous system the network of nerve cells in an animal＇s body．
predator an animal that kills and eats other animals．
prey an animal that is hunted，killed， and eaten by another animal．
retract to draw in or back．Retractable claws can be pulled back into an animal＇s feet．
scales small，overlapping plates that protect the skin of reptiles or fish．
sixth sense the five senses are hearing，touch，smell，sight，and taste． A＂sixth sense＂refers to anything in addition to the five senses．
snake handler someone who is familiar with snakes and knows a lot about them．
species a group of living things that can breed together in the wild．
static electricity a still electrical charge as opposed to a current，which moves．
thermal relating to temperature， especially warmth．
toxic poisonous．
transparent clear；see－through．
tropical describes anything that comes from（or is like）the hot region of the Earth near the equator．
vertebra a small bone in the spine，or backbone．
vertebrate an animal with a backbone．
veterinarian（sometimes called
a vet）a doctor who is specially trained to care for animals instead of people．
warm－blooded describes animals that can control their body temperature．

A
alligators 8, 70-71
eggs 24
young 25
amphibians 64-65, 72-73, 76-77
camouflage 65
colors and markings 16-17
eggs 24-25
habitat 18-19
parental care 24-25
tadpoles 24
amphisbaenians 8
animal keeper 72

B

biomedical researcher 73
biomimetics 42

C

carnivores 20, 46
chameleon 77
southern dwarf chameleon 17
Labord's chameleon 76
cold-blooded 8, 28-29
colors 16
crocodile 9, 22-23, 24, 70-71
breathing 22-23
Nile crocodile 39
saltwater crocodile 38, 77
crocodilian 8, 71

E

electrophysiology 69
exotic animal breeder 72

F

frog 10, 12-13, 14-15, 62-63
African clawed frog 19
Amazon horned frog 20-21
American bullfrog 31
arms 15
black rain frog 59
bone 10
breathing 12-13, 23
bronze frog 30
carnivore 46
Colombian golden poison frog 76
common big-headed frog 30
couqui frog 77
Darwin's frog 25, 62
Dumeril's bright-eyed frog 30
dwarf frog 31
eggs $14,21,33,36$
eyes 10, 21, 30-31
eyespot 30-31
gills 15
glass frog 32-33
gold frog 18
golden toad 62
goliath frog 26-27, 77
head 15
high-casqued chameleon 2
hula painted frog 62
Izecksohn's Brazilian tree frog 47
Lake Titicaca frog 56-57
largest 26-27
legs 10, 15, 68-69
life cycle $14-15$
long-nosed horned frog 31
marbled milk frog 59
markings 30
Monte Iberia frog 27
mossy frog 30
mouth 20

Mozambique spitting cobra 76
nervous system 10
Pacific tree frog 17
poison dart frog 38, 47
poisonous tree frog 31
pygmy leaf-folding frog 58
red-eyed tree frog 16, 18, 30, 31
skin 12-13
smallest 27
smoky jungle frog 30
Southern gastric-brooding frog 62
strawberry poison dart frog 17,18
tadpole 7, 14-15, 21, 33
teeth 15
tree hole frog 18
Wallace flying frog 64
water-holding frog 36-37
wood frog 19

G

Galvani, Luigi 68-69
H
herpetologist 72-73
I
insectivore 46

L

lizard 8, 28-29, 46, 74-75
armadillo girdled lizard 77
bitatawa monitor lizard 63
collared lizard 17
frilled lizard 58
green basilisk lizard 74-75
gecko 8, 42-43, 58
egg 25
feet 34-35, 42-43
Madagascan giant day gecko 8
sandstone gecko 9
stickybot 42
gila monster 46
horned lizard 52-53 iguana 8
green iguana
8, 46
black spiny-tailed iguana 76
komodo dragon 39, 77
sinai agama 46
skink 24, 58
slow worm 19, 58

N

newt 44-45
axolotl 44-45
gills 45
regeneration 45

R

reptiles 8-9, 16-17, 28-29, 72-73, 76-77
eggs 8, 24-25
habitat 18-19
hibernation 29
parental care 24-25
scales 8, 9

\mathbf{S}

Salamander 16, 48-49
Chinese giant salamander 48, 49
fire salamader 16
Japanese giant salamander 48, 49
Snake 8, 11, 40-41, 54-55
albino royal python 40
Asian reticulated python 76

Australian brown snake 38
backbone 11
beaked sea snake 51, 77
black mamba 39
black tiger snake 51
Brahminy blind snake 41
coastal taipan 50
common boa constrictor 9, 41
death adder 50, 51
diamondback rattlesnake 39
faint-banded sea snake 77
fer-de-lance 39
gaboon viper 76
green anaconda 41
heart 11
hog nose viper 50
Indian python 41
inland taipan 38, 51
jaws 11
lateral undulation 66
milk snake 16
Mozambique cobra 59, 76
neck 11
Northern water snake 19
paradise tree snake 66-67
pit viper 40
puff adder 39, 41
python 40
rattlesnake 59
regal ring-neck snake 16
ribs 11
royal python 40
sea snake 23
scales 11
skin 11
skull 11
Texas coral snake 16
vertebra 11
vine snake 41
yellow-bellied sea snake 19 snake handler 73
spine 11
T
toad 7, 18, 25
Couch's spadefoot toad 18
male midwife toad 25
tortoise 18, 24, 77
desert tortoise 18
egg 24
Seychelles giant tortoise 77
tuatara 8, 9, 76
turtle 22, 24, 47, 60-61, 76
breathing 22
egg 24
flatback 61
green turtle 61
hawksbill turtle 19, 47, 61, 76
Kemp's Ridley 61
leatherback turtle 47, 60-61
loggerhead turtle 47, 61
migration 60-61
Olive Ridley 61
sea turtle 47, 60-61

V

vertebrate 10
veterinary surgeon 73
Volta, Count Alessandro 68, 69

The publisher would like to thank the following for their kind permission to reproduce their photographs:
(Key: a-above; b-below/bottom; c-center; f-far; l-left; r-right; t-top)

Alamy Images: 19th era 2 62br; Heather Angel/Natural Visions 48br, 49tl; blickwinkel/McPhoto/PUM 28b; blickwinkel/ Woike 18cla; Rick \& Nora Bowers 53br; Bernard Castelein/Nature Picture Library $5 \mathrm{cr}, 16 \mathrm{tc}, 16 \mathrm{br}, 29 \mathrm{~b}$; Stephen Dalton/ Photoshot Holdings Ltd 17tc, 64cr; E.R. Degginger 50br; Jason Edwards/National Geographic Image Collection 19cla; Richard Ellis 3fcra (turtle), 47cra (turtle); Emily Françoise 4cl, 47cla (turtle); Eddie Gerald 46c (sinai agama); Alex Haas/Image Quest Marine 18cl; David Hancock 73cra; Tom Joslyn 62 (background), 63 (background); Thomas Kitchin \& Victoria Hurst/First Light 19cra; MaRoDee Photography 18c (frame); MichaelGrantWildlife 41ftr; Michael Patrick O'Neill 41for; Mihir Sule/ ephotocorp 40t; Stuart Thomson 4tl, 39bl; Kymri Wilt/Danita Delimont 56fbl, 57fbr; Todd Winner 70-71. Ardea: Ken Lucas 48b; Pat Morris 49b. Biomimetics and Dexterous Manipulation Lab Center for Design Research, Stanford (BDML): 43, 43 cra . CGTextures.com: 46c (leaves), 46 cr (leaves), 46-47t (background), 58-59; Richard 46bl, 46-47c, $47 \mathrm{bl}, 47 \mathrm{fcrb}$; César Vonc 46cla, 46bc, 47 tr , 62 cl (paper), 62cr (paper), 62bl (paper), 62br (paper), 63c.
Corbis: Bryan Allen 60-61; Bettmann 55c, 68cr (background); Milena Boniek/ PhotoAlto 29clb; Alessandro Della Bella/EPA 27fbr, 76 tr (finger); Reinhard Dirscherl/ Visuals Unlimited 22-23; DLILLC 42fbl; DLILLC/PunchStock 18cra; Macduff Everton 55 (mosaic); Michael \& Patricia Fogden 51fclb; Jack Goldfarb/Design Pics 16tl, $16 \mathrm{crb}, 17 \mathrm{tl}, 17 \mathrm{c}$; Clem Haagner/Gallo Images 61bl; Mauricio Handler/National Geographic Society 77br (sea snake); Chris Hellier 76br (chameleon); HO/Reuters 63clb; Wolfgang Kaehler 77tr (tortoise); Jan-Peter Kasper/EPA 44cl, 44-45; Thom Lang 60tl; Wayne Lynch/All Canada Photos 59tr, 60 crb ; Thomas Marent/Visuals Unlimited 76 tl (frog), 77c (frog); Joe McDonald 22cb; Micro Discovery 42bl; Ocean 7ftr, 16 clb , 70bl, 80crb; Rod Patterson/Gallo Images 76 bl (cobra); Jerome Prevost/TempSport

73bc; Kevin Schafer 77 tl (frog); Brian J. Skerry/National Geographic Society 60cl, 60fcrb; Kennan Ward 60cr, 61c; Ron Watts/ All Canada Photos 17cb; Jim Zuckerman 16bl. Dorling Kindersley: BBC Visual Effects—modelmaker 11br; Mike Linley 3fbl (frog); Natural History Museum, London $3 f t l, 11 \mathrm{bl}, 24 \mathrm{c}, 24 \mathrm{clb}, 24 \mathrm{cb}, 24 \mathrm{fclb}, 46 \mathrm{fcra}$ (african dwarf crocodile egg), 46fcra (indian python egg), 46fora (nile monitor lizard egg); Oxford University Museum of Natural History 10bl; Jerry Young 3bc (crocodile), 39tl, 46fcra (gila monster), 50-51t, 73tr; David Peart 19cl, 61cr. Dreamstime.com: 3d renderings 66bc. FLPA: Ingo Arndt/ Minden Pictures 61cl; Michael \& Patricia Fogden/Minden Pictures 62cr, 62bl; Thomas Marent/Minden Pictures 30bl, 31bl; Colin Marshall 47cr (red barrel sponge); Mark Moffett/Minden Pictures 47fbl; Cyril Ruoso/ Minden Pictures 70cr, 77tc (crocodile). Fotolia: Dark Vectorangel 76-77 (trophy); Jula 76tl, 76tc, $76 \mathrm{tr}, 76 \mathrm{cl}, 76 \mathrm{c}, 76 \mathrm{cr}, 76 \mathrm{bl}$, 76bc, 76br, 77tl, 77tc, 77tr, 77cl, 77c, 77cr, 77bl, 77bc, 77br. Getty Images: Altrendo Nature 70cl; Apic/Hulton Archive 69tl, 69br; Creativ Studio Heinemann 16cb; Digital Vision 59bc; Digital Vision/Michele Westmorland 77 cl (komodo dragon); Flickr/ Ricardo Montiel 46crb (sparrow); Gallo Images/Dave Hamman 39br; Iconica/Frans Lemmens 25br; The Image Bank/Art Wolfe 2; The Image Bank/Kaz Mori 73cla; The Image Bank/Mike Severns 23tr; National Geographic/George Grall 20-21; National Geographic/Jason Edwards 31cla, 36-37, 71cr; National Geographic/Tim Laman 63crb, 67; National Geographic/Timothy Laman 641; Photodisc/D-Base 12bl; Photodisc/Lauren Burke 441, 45r; Photodisc/Nancy Nehring 76c (iguana); Photographer's Choice/ Cristian Baitg 12br;
 Photographer's Choice/Grant Faint 48-49t; Photographer's Choice/Jeff Hunter 47c (yellow sponge); Photographer's Choice RF/Peter Pinnock 61crb; Photonica/ David Trood 1clb; Purestock 41 fbr ; Robert Harding World Imagery/Gavin Hellier 56c (hat); Oli Scarff 72cla; SSPL 68cla, 68c; Stone/Bob Elsdale 12-13, 23tl; Stone/Keren Su 48ca, 49t (background); Taxi/Nacivet 40-41; Heinrich van den Berg 17ca, 80tl; Visuals Unlimited/Joe McDonald 53cr; Ian

Waldie 72cra.
iStockphoto.com:
Brandon Alms 64fbr; craftvision 68tr, 68br, 68fcl; kkgas 68cr (ink), 69tr, 69ftr. Kellar Autumn
Photography: 34-35. Thomas Marent: 32-33, 33br. naturepl.com: Miles Barton 77 bl (lizard); John Cancalosi 53tr; Claudio Contreras 5tr, 47 fcr (turtle); Nick Garbutt 18cr; Tim Laman 65tl, 65r; Fabio Liverani 58tr; Tim MacMillan/John Downer Pr 651, 66tl; George McCarthy 58br; Pete Oxford $21 \mathrm{tr}, 56 \mathrm{bl}, 56 \mathrm{br}, 57 \mathrm{t}, 57 \mathrm{bl}, 57 \mathrm{br}$;
Premaphotos 58bc; Robert Valentic 36br; Dave Watts 58tc. NHPA/Photoshot: A.N.T. Photo Library 36tr, 51 cl , 51br, 53 crb , 62cl; Anthony Bannister 59br; Stephen Dalton 45 cr , 64crb; Franco Banfi 77bc (crocodile); Nick Garbutt 76tc (snake); Daniel Heuclin 26-27, 27tr, 30br, 76cl (snake); David Maitland 31br; Mark O'Shea 51c; OceansImage/Franco Banfi 47 cr (yellow sponge); Haroldo Palo Jr. 59tc; Gerry Pearce 51tc; Jany Sauvanet 31clb. Photolibrary: Olivier Grunewald 61fcl; Joe McDonald 74-75; Oxford Scientific (OSF)/Emanuele Biggi 72bc; Oxford Scientific (OSF)/Michael Fogden 64tr; Peter Arnold Images/Kevin Schafer 18c. PunchStock: Stockbyte 18ca (frame), 18clb (frame), 19cra (frame), 19cl (frame). Science Photo Library: 69cra; Suzanne L. \& Joseph T. Collins 17tr; Georgette Douwma 28cl; Dante Fenolio 33tr; Fletcher \& Baylis 41fcra; Pascal Goetgheluck 40bl; Alex Kerstitch/Visuals Unlimited 33cr; Edward Kinsman 41cl; Thomas Marent/Visuals Unlimited 30cla, 30 clb , 31 cra , 31 crb ; Nature's Images 30crb; Dave Roberts 10c; Sinclair Stammers 30cra; Karl H. Switak 16cr; T-Service 41tl. Igor Siwanowicz: 8bl, 42r, 52-53. Paul Williams/Iron Ammonite: Arkive 49tr. Brad Wilson, DVM: Dr. Luis Coloma 56c (frog).

Jacket images: Front: Corbis: Nikolai Golovanoff c; Sprint cl, cr. Back: Corbis: DLILLC cl. Getty Images: Photonica/David Trood br. Spine: Corbis: Ocean b. Getty Images: Photodisc/Adam Jones t.

All other images © Dorling Kindersley For further information see:
www.dkimages.com

[^0]: Even after she was slain, the head of
 Medusa still had the power to turn anyone who looked at it into stone.

 Perseus returned it to the goddess Athena, who attached it to her shield and used it to scare her enemies.

