

Represent the given value using the base ten model.

There are two hundreds, four tens and seven ones.

Identify the value and the position of the underlined digit.

1,0<u>7</u>2

Position is the PLACE of a digit.

Value is how much a digit it WORTH

Position is the <u>ten's place</u>

Value is <u>70</u>

Represent the given value in expanded form.

700 + 5

Sequence the following numbers from greatest to least.

2,904 2,094 2,409 2,940

It is most efficient to compare numbers starting with their highest values and move down.

2,940 > 2,904 > 2,409 > 2,094

Represent the given value using the base ten model.

There are three hundreds, six tens and zero ones.

Identify the value and the position of the underlined digit.

5,00<u>5</u>

Position is the PLACE of a digit.

Value is how much a digit it WORTH

Position is the <u>one's place</u> Value is **5**

Represent the given value in expanded form.

111

100 + 10 + 1

Sequence the following numbers from greatest to least.

779 979 797 977

It is most efficient to compare numbers starting with their highest values and move down.

979 > 977 > 797 > 779

Represent the given value using the base ten model.

There are two hundreds, zero tens and three ones.

Identify the value and the position of the underlined digit.

1,<u>8</u>40

Position is the PLACE of a digit.

Value is how much a digit it WORTH

Position is the hundred's place

Value is <u>800</u>

Represent the given value in expanded form.

800 + 90

Sequence the following numbers from greatest to least.

3,323 2,333 3,332 3,233

It is most efficient to compare numbers starting with their highest values and move down.

3,332 > 3,323 > 3,233 > 2,333

Represent the given value using the base ten model.

There are six hundreds, two tens and nine ones.

Identify the value and the position of the underlined digit.

9,9<u>0</u>6

Position is the PLACE of a digit.

Value is how much a digit it WORTH

Position is the <u>ten's place</u> Value is <u>O</u>

Represent the given value in expanded form.

400 + 50 + 9

Sequence the following numbers from least to greatest.

8,198 1,988 9,818 8,189

It is most efficient to compare numbers starting with their lowest values and move up.

1,988 < 8,189 < 8,198 < 9,818

Represent the given value using the base ten model.

There are three hundreds, four tens, and one one.

Identify the value and the position of the underlined digit.

2,<u>0</u>36

Position is the PLACE of a digit.

Value is how much a digit it WORTH

Position is the hundred's place

Value is <u>zero</u>
-

Word Problem #19

Represent the given value in expanded form.

518

500 + 10 + 8

Sequence the following numbers from least to greatest.

2,318 3,018 2,813 3,128

It is most efficient to compare numbers starting with their lowest values and move up.

2,318 < 2,813 < 3,018 < 3,128

Represent the given value using the base ten model.

There are two hundreds, one ten and five ones.

Identify the value and the position of the underlined digit.

3,19<u>6</u>

Position is the PLACE of a digit.

Value is how much a digit it WORTH

Position is the <u>one's place</u> Value is <u>6</u>

Represent the given value in expanded form.

371

300 + 70 + 1

Sequence the following numbers from least to greatest.

3,148 1,418 3,841 4,181

It is most efficient to compare numbers starting with their lowest values and move up.

1,418 < 3,148 < 3,841 < 4,181

Represent the given value using the base ten model.

There are eight hundreds, three tens and four ones.

Identify the value and the position of the underlined digit.

5,<u>2</u>63

Position is the PLACE of a digit.

Value is how much a digit it WORTH

Position is the hundred's place

Value is <u>200</u>

Represent the given value in expanded form.

792

700 + 90 + 2

Sequence the following numbers from least to greatest.

6,563 6,653 5,363 3,655

It is most efficient to compare numbers starting with their lowest values and move up.

3,655 < 5,363 < 6,563 < 6,653

Represent the given value using the base ten model.

There are four hundreds, eight tens and three ones.

Identify the value and the position of the underlined digit.

7,3<u>4</u>3

Position is the PLACE of a digit.

Value is how much a digit it WORTH

Position is the <u>ten's place</u> Value is **40**

Represent the given value in expanded form.

503

500 + 3

Sequence the following numbers from least to greatest.

4,952 9,421 5,924 4,529

It is most efficient to compare numbers starting with their lowest values and move up.

4,592 < 4,952 < 5,942 < 9,421

Identify the value and the position of the underlined digit.

<u>4,703</u>

Position is the PLACE of a digit.

Value is how much a digit it WORTH

Position is the **thousand's place**

Value is <u>4,000</u>

Represent the given value using the base ten model.

There are seven hundreds, three tens and eight ones.

	П		××
		I	XX
			××

Sequence the following numbers from greatest to least.

2,471, 2,714, 2,174, 2,417

It is most efficient to compare numbers starting with their highest values and move down.

2,714 > 2,471 > 2,417 > 2,174

Represent the given value in expanded form.

2,409

2,000 + 400 + 9